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Abstract. In this paper, the classical integral transform technique is applied to solve the two dimensional Pennes bioheat transfer
equation in Cartesian coordinates subjected to convective boundary conditions. A straightforward analytical solution is obtained
allowing for benchmark results and furnishing a close insight of some relevant aspects of cancer treatment by hyperthermia.
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1. Introduction

The success of the treatment of malignant tumors by hyperthermia calls for the knowledge of the temperature field
for both healthy and cancerous tissues. This medical procedure consists in exposing malignant cells to temperatures in
the range of 42 °C to 45 °C in order to retard, arrest or reverse the growth of tumors. Although susceptible to the
increase in temperature, the normal cells do not exhibit the same degree of sensitivity as the malignant cells and
therefore the potential of induced hyperthermia as a therapy for cancer has been long considered for both local and
global treatments. For the case of local hyperthermia, it is important to predict and control the thermal fields generated
by the external medical device responsible for increasing local temperature. However, the task of controlling both
temperature levels and duration of the heating process cannot be satisfactory accomplished based solely on
measurements because only a few localized temperature readings can be monitored during the therapy. Therefore,
mathematical models commonly employed in engineering are often used in the simulation of heat transfer in living
tissues, furnishing temperature profiles that may guide the physician before and after the treatment. One of these models
is the bioheat transfer equation proposed by Pennes (1948) that consists in a heat diffusion equation together with an
energy sink term that accounts for the effect of the temperature difference between the blood supply and the tissue. The
source term of this equation carries the effects of both metabolic heat generation and the external heat source applied by
the physician.

Previous investigations on this matter have relied on pure numerical methods such as finite differences (O’Brien
and Mekkaoui, 1993; Rawnsley et al., 1994) and boundary elements (Chan, 1992) or on approximate and exact
analytical solutions (Chato, 1980; Huang et al., 1994). Analytical solutions allow conditions that occur during
hyperthermia treatments to be studied in closed form and also provide an improved basis for verification of numerical
codes. Accordingly, the main contribution of this work is to employ the classical integral transform technique to
establish an analytical solution to the two dimensional transient bioheat transfer equation subjected to convective
boundary conditions. Following the solution, the influence of blood perfusion on transient heat transfer in several
human tissues subjected to a heat source is discussed, leading to conclusions that may aid the planning of hyperthermia
treatment. Moreover, this straightforward methodology (Azevedo, 2004; Presgrave, 2005; Presgrave et al., 2005)
provides benchmark results for the numerical investigator interested in developing and validating bioheat transfer
software.

2. Mathematical formulation

The following heat transfer problem for a rectangular perfused organic tissue is considered in accordance to
Pennes (1948) model:
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The second term on the left hand side of the bioheat transfer equation is a sink term due to the convective effect of
capilar vascularization in living tissues while the third one is a source term representing a combined effect of both the
internal metabolic heat generation and the external irradiation. This mathematical model aims to predict the temperature
levels in a perfused tissue subjected to a hyperthermic treatment based on an external heating device.

The boundary conditions are taken as prescribed constant temperature at the top and convective heat transfer with
an external medium at the bottom. This latter boundary condition attempts to simulate the heat transfer between the
tissue and an adjoint large blood vessel. Initial temperature is considered constant.

 By introducing the following dimensionless variables:
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Problem (1)  is given in dimensionless form as:
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This is a particular case of the so-called class I problem (Mikhailov and Özisik, 1984),  and may be solved by the
classical Integral Transform Technique (Özisik, 1980) as described in the next section. Dimensionless time τ is also
referred as Fourier number (Fo) in the literature. However, for the sake of conciseness, the symbol τ shall be employed
here.

3. Solution

The temperature field is expressed in the form of an expansion in terms of eigenfunctions :
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where eigenfunctions )X(iψ and )Y(jλ  are solutions to eigenvalues problems in the X and Y directions, respectively,
obtained as follows:
 First, in order to extract the desired Sturm-Liouville problems basic to eq. (4), the homogeneous version of problem
(3) is considered:
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Then, by applying the method of separation of variables in problem (5), two eigenvalues problems are obtained.
The first one is an eigenvalue problem in the X direction,
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the eigenfunction of the above problem is found to be:
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where,
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Moreover, due to the boundary condition of the second type at both x extremes, 00 =µ  is also a solution to
problem (6) and the corresponding eigenfunction and norm are:
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The second eigenvalue problem is:
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the solution to problem (11) above is:

)YA(sen)Y( jj −β=λ , where jβ  are the positive roots of the following transcendental equation
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Transcendental equation (13) may be solved by the Bissection Method or by well-established mathematical
routines such as DZEBREN/IMSL (1999).

Next, the eigenvalues problems obtained above are used to yield the transformations in the X and Y directions and
its respectives inversions.
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Recalling the orthogonality property of the eigenfunctions )X(mψ , which is written as:
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Equation (15) results in,
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Now, eq. (17) is operated on with ∫ λ
A

0
n )Y( dY :

∫ τθ∫
1

0

A

0
),Y,X( dY)Y()Y(N)(CdXdY)Y()X( nj

A

0
mmj

1j
nm λλ∫τ∑=λψ

∞

=
(18)

Again, by the orthogonality property of the eigenfunctions )Y(nλ :
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Upon substitution  of )(Cmn τ into Eq. (4), it is obtained:
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This integral represents the transform of temperature distribution ),Y,X( τθ in the X direction, resulting into a

transformed potential ),Y(i τθ .
The substitution of eq. (22) into eq. (21) yields:
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The above equation is the inversion for the transform, which takes the transformed temperature ),Y(i τθ  back to
its original form ),Y,X( τθ . Now, let :
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This integral is the transform of ),Y(i τθ  in the Y direction, resulting in a second transform )(ij τθ , now a
function of dimensionless time only.

Upon substitution of eq. (24) into eq. (23), a recovery formulae for the original temperature ),Y,X( τθ is obtained,

which performs the inversion of the transformed potentials into the X and Y directions, )(ij τθ :
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Having established the desired integral-transform pair for problem (3), the next step is to rewrite the original

formulation in terms of )(ij τθ . Thus,  eq. (3a) is multiplied by )X(iψ  and integration from X = 0 to X = 1 is
performed, giving:
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By making use of  eq. (22), this expression is rewritten as:
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where it is defined,
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 By solving the integral in eq. (27) by parts, one obtains:
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The first term of this equation is evaluated by multiplying boundary condition eq. (5b) by )0(iψ :

0
X

)0(
0X

i =
∂

θ∂
ψ

=
(30)

and boundary condition eq. (6b) by ),Y,0( τθ :

0),Y,0(
dX

)X(d

0X

i =τθ
ψ

=

(31)

and subtracting eq. (30) from eq. (31) to give:

−
∂

θ∂
ψ

=0X
i X

)0( 0),Y,0(
dX

)X(d

0X

i =τθ
ψ

=

(32)

Analogously, by using boundary conditions at X = 1 from eq. (5) and eq. (6), the following relation is established:
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Next, eq. (32) and eq. (33) are substituted into eq. (29) resulting in:
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Now, the integral in eq. (34) above is evaluated by operating on eq. (6a) with dX
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i∫ θ  and making use of transform
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Next, eq. (35) is substituted into eq. (34) resulting in:
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Equation (36) is a partial differential equation in Y and τ . In order to transform the problem in the Y direction,
eq. (36) is multiplied by )Y(jλ  and integration from Y = 0 to Y = A is performed, resulting in:
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Equation (38) is integrated by parts to yield :
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 The third term of this equation is evaluated with the aid of the eigenvalue problem in the Y direction. Equation
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After substituting eq. (40) above into  eq. (39), it is found that:
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The second term of eq. (41) above is evaluated by multiplying the boundary condition at Y = 0 for problem (11)
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By substituting, now,  eq. (42) into eq. (44), the following expression at Y = 0 is obtained:

dX)0(Bi
dY
d

),0(
Y

)0(
1

0
ij

0Y

j
i

0Y

i
j ∫ ψλθ−=

λ
τθ−

∂
θ∂

λ ∞
==

(45)

By multiplying eq. (11c) by
AY

i

Y
=

∂
θ∂

and eq. (3e) by
dY

)A(d jλ
results in, respectively:

0
Y

)A(
AY

i
j =

∂
θ∂

λ
=

(46)

and

0
dY

)A(d
),A,X( j =

λ
τθ (47)



Proceedings of ENCIT 2006 -- ABCM, Curitiba, Brazil, Dec. 5-8, 2006 – Paper CIT06-0605

The X direction transform is applied in eq. (47) above furnishing:
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−
∂
θ∂

λ
=AY

i
j Y

)A( 0),A(
dY
d

i
AY

j =τθ
λ

=

(50)

Finally, substituting eq. (45) and eq. (50) into eq. (41),
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Therefore, a system of ordinary differential equations as a function of τ results, for the determination of the
transformed original problem. This system is rewritten in the following form:
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  The exact solution for this decoupled system of ordinary differential equations is:
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 Now, the original temperature field ),Y,X( τθ  is recast by successive application of inversion in the X and Y
directions, eq.(29) and eq. (27), resulting in:
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4. Results and discussion

In this section, numerical simulations are presented in order to analyze the effects of the perfusion term on Pennes
equation for several tissues subjected to external heating and metabolic generation. According to the dimensionless
variables employed here, the initial (θ0) and ambient (θ∞) temperatures are functions of both tissue and heat generation.
In every case studied, the characteristic dimension L is 0.03 m and Ta = 36.5 °C. The adopted value for the external heat
source is 50,000 W/m3 and metabolic heat generation rate is 33,800 W/m3, (Deng and Liu, 2002). As a result, g =
83,800 W/m3 in all computations performed in this section. Perfusion is regarded as constant and its value varies with
the tissue being considered. Thermophysical properties of  blood and tissues are also considered constant. Accordingly,
blood density and specific heat are taken as ρb = 1060 kg/m3 and cb = 3720 J/kgK, respectively, (Brix et al., 2002),
while perfusion and thermal conductivity for several tissues are listed in Tab. (1).

Table 1. Thermophysical properties for several tissues (subscript t)

Reference
Blood perfusion

]msm[

w
3

t
13

b

b
−−

 Density

]kgm[ 3
t
−

ρ
Specific heat

]kJkg[

c
11

t
−−

Thermal
conductivity

]kWm[

k
11

t
−−

Pf

Eq.(2)

Chan (1992) - ficticious tissue 0.00001 1000 4185 0.50 0.1
Brix et al. (2002) – adipose tissue 0.00050 950 3100 0.27 5
Jiang et al.(2002) – inner tissue 0.00125 1000 4000 0.50 10
Jiang et al.(2002) – subcutaneous tissue 0.00125 1000 2500 0.19 15
Brix et al. (2002) – liver 0.01500 1060 3600 0.52 100
Brix et al. (2002) – kidney 0.06100 1050 3700 0.54 400

For the sake of computations, dimensionless perfusion (Pf) values computed with above data are rounded to the
figures indicated in the table.

Dimensionless temperature distributions are obtained from Eq. (57) upon truncation of the infinite sums to a
sufficiently large order that ensures a converged result of at least three significant digits. Convergence is found to be
fast and typically no more than 30 terms are needed in the summations. A complete discussion regarding the
convergence behavior of the infinite series is found in Azevedo (2004).

Figures (1) - (3) show dimensionless temperature distributions at the center of the tissue as a function of
dimensionless time and dimensionless perfusion for the situation of  Bi = 5, G = 1, θ0 = 0.003 and θ∞ = 0.001, and three
different aspect ratios, namely, 0.25, 0.50 and 1.

Figure 1. Dimensionless temperature distribution: Bi = 5, G = 1, θ0 = 0.003 , θ∞ = 0.001, A = 0.25.
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Figure 2. Dimensionless temperature distribution: Bi = 5, G = 1, θ0 = 0.003 , θ∞ =0.001, A = 0.50.

Figure 3. Dimensionless temperature distribution: Bi = 5, G = 1, θ0 = 0.003 , θ∞ =0.001, A = 1.0.

An inspection of the above graphs reveal certain interesting trends regarding the transient temperature distributions
in an applied situation such as a hyperthermia treatment of a cancerous tissue.  As already mentioned earlier, in such
situations, it is desired to achieve a certain degree of temperature, usually around 44 °C, in order to destroy the
malignant cells. Figure (1) shows that the temperature distributions are only slightly above its initial condition for the
case of a low aspect ratio tissue such as A = 0.25 for all the simulated perfusion coefficients suggesting that the desired
threshold for hyperthermia is not being achieved. On the other hand, for aspect ratios greater than 0.25, temperature
levels are significantly detached from their initial conditions. In fact, Fig. (2) and Fig. (3) illustrate this tendency when
dimensionless times greater than 0.01 are considered. Also, the role of the perfusion coefficient in the temperature
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distribution can be inferred from these figures. Consistent with its role as a sink term, a high perfusion rate results in a
severe temperature decrease. This behavior can be better observed in Fig. (3) by analyzing the curves related to Pf = 0.0
and 400, which simulate a situation without any perfusion effects and another one in which an extreme heat sink due to
blood flow is considered. For the steady-state situation, despite the action of the external heat source, the Pf = 400 curve
is slightly above the initial condition whereas the Pf =0 situation achieves a dimensionless temperature of around 0.16.
Also worth mentioning is the fact that for dimensionless times less than 0.01, the temperature in the center of the
targeted area does not seem to be strongly influenced by the perfusion coefficient. If high temperatures are desired, as in
the case of hyperthemia, certainly the exposure time should be much greater than 0.01.

Next, we present some results in dimensional form in order to obtain a better physical perception of the role of the
various above mentioned quantities, in the temperature fields related to the bioheat transfer problem in question. Table
(2) shows the dimensional initial temperature together with its steady-state value in the geometrical center of the
targeted area for three aspect ratios and for several tissues as described in Tab. (1). Despite the variation of the
thermophysical properties, an analysis of Tab. (2) suggests that it is a good assumption to consider the same initial
condition and external temperature for all the cases reported. On the other hand, a fixed Biot number does not imply in
the same convective heat transfer since here, the thermal conductivity of a certain tissue may be quite different from
another one. For a fixed perfusion coefficient, temperature levels monotonically increases for increasingly aspect ratios.
A closer observation shows that for liver and kidney, steady state temperature distributions remain very close to their
initial levels for the external heat source of 50,000 W/m3. This observation suggest that the hypertermia treatment for
these tissues is inefficient for the value of external heating adopted here as the results obtained in the simulations
indicate that the temperature is below 44 °C. Also, target areas with an aspect ratio of 0.25 show steady state
temperature below the 44 °C threshold. As a result, with such perfusion coefficients, hyperthemia will only be an
effective treatment for situations which involve tissues with aspects ratios greater or equal to 0.5. In addition, an
inspection of this table shows the role of the combined effects of the perfusion, conduction and convection in the
bioheat transfer process. For instance, although the perfusion coefficient for the adipose tissue is 50 times greater than
the one reported by Chan (1992), its steady state temperature is actually about 2 °C higher for the A=0.25 situation.
This apparent contradiction is better understood by noticing that the thermal conductivity of the adipose tissue and the
convective coefficient are considerably smaller than those reported by Chan (1992) implying that the convection and
conduction effects for this situation are not dominant, resulting in a low heat transfer rate to the external environment.
Therefore, the energy balance indicates that the source term combined with the low convection and poor conduction
dominates over the perfusion heat sink. On the other hand, a comparison between the results reported by Chan (1992)
and our simulations regarding the inner tissue show that  for this case the temperature levels decrease as expected since
the thermal conductivity, initial and environmental temperatures and convective coefficients are the same in both cases.
Since the only difference is in the perfusion coefficient, it is naturally expected that the inner tissue should present a
smaller steady-state temperature.

Table2 - Initial and steady-state temperatures for  Bi = 5.0; G = 1.0; 0θ = 0.003; ∞θ = 0.001.
Reference ]C[T 0

0 ]C[T 0
∞

h
[W m-2 K-1]

25.0A

]C[T 0

f
2
1

= 50.0A

]C[T 0

f
2
1

= 00.1A

]C[T 0

f
2
1

=

Chan          (1992) - ficticious tissue 36.95 36.65 83.3 38.76 43.92 61.32
Brix et al.  (2002) – adipose tissue 37.34 36.78 45.0 40.43 47.81 63.51
Jiang et al. (2002) – inner tissue 36.95 36.65 83.3 38.49 41.67 46.71
Jiang et al. (2002) – subcutaneous tissue 37.69 36.90 31.7 41.43 48.29 57.08
Brix et al.  (2002) – liver 36.94 36.65 86.7 37.41 37.79 37.94
Brix et al.  (2002) – kidney 36.92 36.64 90.0 36.82 36.85 36.85

Finally, Table (3) shows the equivalent dimensional times for τ = 0.1 together with the respective central point
temperatures for the high aspect ratio situation reported in this contribution. Once again, an inspection of these values
indicate that the hyperthermia threshold is not achieved for the liver and kidney tissues. However, for the other
biological tissues considered in our analysis, temperature levels are indeed above 44 °C in a time frame greater than 10
and less than 20 minutes for the external heat source mentioned earlier. Such results are believed to be relevant for the
planning of a successful treatment of malignant tumors by hyperthermia.
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Table 3 . Equivalent dimensional times forτ = 0.1 and  respective temperatures at the center of the tissue.  Bi =
5.0; G = 1.0; 0θ = 0.003; ∞θ =0.001; A = 1.0

Reference Time ][0

2
1 CT

f

Chan          (1992) - ficticious tissue 10min 54sec 49.24
Brix et al.  (2002) – adipose tissue 16min 21sec 55.48
Jiang et al. (2002) – inner tissue 12min 44.88
Jiang et al. (2002) – subcutaneous tissue 19min 44sec 54.86
Brix et al.  (2002) – liver 11min 37.94
Brix et al.  (2002) – kidney 10min 47sec 36.85

5. Conclusions

In conclusion, a straightforward methodology based on the classical integral transform technique is devised to aid
physicians throughout the decision making process regarding the use of high energy sources for the destruction of
cancerous cells located in various parts of the human body. Although the methodology here reported was only tested in
the cartesian system, our research points out that more elaborate geometries can also be successful tackled by the same
approach with equal mathematical simplicity. For example, the same solution procedure was successfully applied to the
temperature distribution in a human limb subjected to a skin burn and also to the selective cooling of the human brain
which is a medical procedure designed to aid patients in the immediate moments following an ischemic trauma
(Presgrave, 2005).
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